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Summary 
The final report of the project FA8655-10-1-3069 presents the combined results of 
the project including: introduction of the key mathematical models governing optical 
field propagation in the multiple-core fibres, study of the steady state propagation 
regimes, study of the modulation instability in multiple-core fibres, investigation of 
the nonlinear stage of the instability and energy transfer. We have determined 
theoretically thresholds of the modulation instability in the 2D infinite array of discrete 
waveguides, and in 2-, 3- and 4-core array systems. We have found stationary 
solutions in the ring configurations with a central core and N symmetrically 
surrounding cores and discovered in the array with non-equal cores (e.g. with the 
central core) the phase matching and stable steady-state propagation is possible 
only in the nonlinear regime. We have determined theoretically thresholds of the 
modulation instability in the ring configuration. The important prediction of the theory 
is a level of nonlinear oscillations resulting from the development of modulation 
instability. We studied modulation instability of such solutions in the ring 
configurations with a central core and N symmetrically surrounding cores. All the 
obtained theoretical results have been verified using numerical simulations. 
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1. Introduction 
Recent developments in nonlinear photonics, laser physics and telecommunications 
attracted a great deal of attention to multi-core fibres and, in more general sense, to 
mathematical problems of electromagnetic field propagation in multiple interacting 
waveguides. In optical communications the reason behind this interest is that the 
transmission capacity of a single strand of fibre is fast approaching the limit (around 
100 Tbit/s) set by the available optical fibre bandwidth and optical power input to the 
fibre. New concepts are based on the paradigm shift towards a new generation of 
optical infrastructure including multi-core fibre employing space division multiplexing. 
On the other hand, fast growing powers of modern optical devices make underlying 
dynamics and evolution of fields and beams essentially nonlinear. An important 
example is high-power fibre lasers. The fibre laser manufacturing has been greatly 
enhanced by the technologies developed in the telecom industry, but the recently 
emerged applications (and markets) include so different areas as medicine, 
metrology, defence, spectroscopy, industrial cutting, welding, with the list of new 
applications growing very fast. Fibre lasers hold a number of attractions including 
compactness, very good cooling characteristics and high quality of emitted light. 
Fibre lasers are widely considered now as promising technology of producing 
efficient high-power coherent light sources. However, fibre laser’s brightness is 
limited by the variety of nonlinear effects. As the power level of fibre sources 
increases, nonlinear effects become increasingly important. Understanding and 
controlling nonlinear effects in multi-core fibre holds the key to unlocking new 
techniques and technologies. A number of engineering and physical techniques are 
used to scale fibre laser power up. Mathematical modelling plays a crucial role in 
building platform for new progress in this field. The way to reduce impact of 
detrimental nonlinear  effects and to increase the peak power is to use the coherent 
beam combining, when the power in one beam is smaller than the threshold 
determined by the nonlinear processes, but the total power can be greatly higher 
then this threshold. Due to the fixed phase between the beams at the output of the 
system they can combined in one spot. Coherent combining of several fibre laser 
beams with a fixed phase relationship is one of the key methods to achieve high 
brightness sources. There are several technical approaches to coherent combining, 
including intra-cavity fibre couplers developed for the telecommunications industry. 
Another, mathematically similar promising technique is the application of a multi-core 
fibre as an active medium in lasers and amplifies. The key challenge in this method 
is the requirement of phase locking for the modes generated in different cores that 
are weakly coupled through fields overlapping.  
 
Nonlinear dynamics in discrete systems is an interdisciplinary research field that has 
links to a large number of areas of science and technology [1-12]. This is both 
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because matter itself is described by discrete models and also because many 
important engineering nonlinear systems are based on few interacting constituents 
or elements. Nonlinear discrete systems describe a variety of phenomena in 
condensed matter, nonlinear optics, biology and other fields; from energy transport in 
molecular chains and protein molecules to light propagation in waveguide arrays [1-
12]. A number of different physical systems can be effectively described by the same 
mathematical models. In this report we present generic and practically very important 
example of low-dimension nonlinear discrete systems – light propagation in multi-
core fibre and demonstrate new features introduced by discrete multi-core 
propagation. 

 
2.  Methods, Assumption and Procedures 
We consider nonlinear dynamics of the optical field propagating in a multi-core fibre 
with weakly and strongly coupled cores. Figure 1 illustrates schematically the 
nonlinear discrete systems considered in the two previous reports here. 
 
 
 

 
 

Figure 1. The schematic depiction of the multi-core fibre. 
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2.1 Basic equations  
  The basic model that we consider here is a low dimension version of the discrete 

nonlinear Schrödinger equation:  
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  Here kA  a field in the k-th core, with 0A  (when applied) corresponding to the central 
core, mk kmC C= is the coupling coefficient between modes m and k; kk kC β= and 
wave numbers in different cores and not assumed to be the same. The phase 
matching and stable joint CW propagation in non-symmetric arrays (e.g. 3 and 4 in 
Fig 1) is provided by the nonlinear phase shifts. The Eq. (1) governs all the cases 
shown in Fig.1:  
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The interaction between the cores makes the phases of radiation in different cores 
coupled and coherent. On the other hand, such interaction can induce the 
nonlinear instabilities (and periodic or irregular oscillations) which produce the 
intensity modulation in the cores above the destruction threshold. The instability 
threshold is determined not only by the laser power, but by the cores geometry, 
their relative positions, cladding structure and other design factors.  

  
  We study the modulation instability and determine the threshold power for specific 

multi-core fibre structures. We apply theoretical analysis where it is possible and 
also we develop specific numerical codes for the purpose of the project. The 
results being obtained in a very general mathematical form produce a general 
platform for new optical technologies of manipulation of high-power laser beams. 
We would like to stress that mathematical analysis of the problem is of great 
interest, because analytical solutions would allow designers to avoid time 
consuming full Maxwell equations modelling that is not very practical for design 
consideration. Analytical results will serve as the design guidance and as testing 
cases for complex numerical codes used for final pre-fabrication modelling. In the 
first part of the project we consider assumption of the weakly interacting 
waveguides that allow us to apply coupled mode theory. 
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3. Modulation instability in system of interacting waveguides  
   

  First recall some general properties of systems with a small number of interacting 

waveguides. Consider nonlinear evolution of the fields )(zAk in the multi-core fibre 

(k-cores) with Kerr nonlinearity. Initial condition for all cases below 

is: 0)0( PzAk == . Due to overlap of the modes they interact linearly with some 

coefficient C that depends on the distance between cores and mode-field 

distribution. Difference in linear interactions between different modes below is 

geometrical. Please create all relevant pictures for each case.  

 
 

3.1.1 Two-core system 
 
 
First we repeat well-known results for the two core system that will be used for 
testing of our numerical codes. 
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Evidently, C and gamma can be scaled out of equations by scaling field A and 
propagation distance z. There is a well known exact analytical solution for two-core 
problem. However, it is illustrative to consider modulation instability for this coupler. 
Consider small perturbations of the CW solution of the form:  
 

]2exp[)(]2exp[)( 02,12,1002,102,1 iCzzPiibaPiCzzPifPA +×++=+×+= γγ
    

   Linearization yields the equations 
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From here ).0()0()(4, 212102121 bbzaaPbbconstaa +++=+=+ γ  Assuming that 

],exp[, 2121 zibbaa Λ∝−− (instability occurs when 0)Im( <Λ ), we get the dispersion 
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For completeness of analysis we reproduce well know analytical solution for the 
two-core system [ ] Consider .],exp[],exp[ 21222111 φφφφφ −=== iPAiPA  
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Conserved quantities (integrals of motion):  
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It is convenient to introduce: 
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 The evolution equation reads: 
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the solution to Eq. 2 reads: 

.14221),|)((2 2
2

0 <
Γ

−=−=<+=Δ
α

δαα kkzzCdnPP cr

  
Next let us examine linear instability of the solution with uniform power distribution: 
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]2exp[ 002,1 iCzzPiPA +×= γ  
Consider initial conditions with small deviations of the uniform power distribution.  

.)0(),0(),0()0()0( 02,12,12,12,102,1 PbaibaPA <<++=  

Then we can link initial perturbations with the initial conditions to Eq. 2: 
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These  conditions lead to relations between parameters α, k and z0: 
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The parameter α can be expressed through the algebraic equation: 
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Thus, we can express z0 as: 
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where F is elliptic integral of the first kind and 
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3.1.2 Three symmetrically placed cores 
 
In the case of symmetrically placed three cores the key model reads: 
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Consider initial condition with small deviations from the uniform power distribution 
 ]22exp[ 00 CzizPiPAk +×= γ :  
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Linear evolution of the perturbations then is governed by the standard set of 
equations:  
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Considering ziebaba Λ= )0(),0(,  we get determinant 0)det( 2
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  3.1.3 Four cores in a square lattice 
 
In the case of the four cores there are two main options: square lattice and one 
core in the centre. We consider first square lattice case. 
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Here dC  stands for diagonal coupling between modes. It is evident that 2 1.C C<  

 
Similar to previous cases, consider initial condition with small deviations from the 

uniform power distribution 0 0 1 2( ) exp[2 2 ]:kA z P i P z iC z iC zγ= × + +  
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3.2 Modulation instability in the infinite quadratic lattice 

 
We consider now the case of the infinite array of weakly interaction nonlinear 
waveguides as a reference point for future optimisation of the design of arrays.  In 
the case of the infinite square array, the master equation reads 
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Consider modulation instability for this lattice with the small perturbations of the CW 
in the following form:  
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]42exp[)(]42exp[)( 0,,00,0 CzizPiibaPCzizPifPA mnmnmnnm +×++=+×+= γγ
 

    
   Linearization yields the equations 
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(instability occurs when 0)Im( <Λ ), we get the dispersion relation: 
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The instability occurs when power is larger than a critical value
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In the limit small k it gives criterion of the instability: 
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4. Non-symmetric multi-core systems  
 

  4.1 Mathematical model  
 
The case of multiple peripheral cores and one in the center the general solution is 
not straightforward. However, in many situations dynamics in mutli-core systems 
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can be reduced (assuming 1, 1,...,kA A k N= = ) to analysis of effective two-core 
model that can serve as a symmetric limit to multi-core systems: 
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Here normalised functions and variables are introduced: 
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The system (3) is a Hamiltonian one with the following conserved quantities: 
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4.2 Steady state solutions  
 
We would like to stress that despite simple appearance, even the stationary, steady 
state solution of the system (3) is non-trivial anymore (compared e.g. to the 
symmetric dimer/coupler). To provide for coherent light evolution in multiple cores, 
difference in propagation constants has to be compensated by the nonlinear phase 
shifts. Consider steady-state solutions of the system (3) in the form: 
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The relatively simple mathematical result leads to quite nontrivial physical 
consequences. Namely, steady state dynamics in such system is possible only with 
a certain imbalance (given by factor 2Γ ) between powers propagating in different 
cores. This imbalance is due to nonlinear contribution to the phase matching 
condition of the propagation constants. The physics is rather transparent - this power 
split is due to nonlinear phase shift contribution to the phase matching condition 
required for coherent propagation in multiple cores. Note that there are several 
power distributions (between central and peripheral cores) that can provide for a 
coherent steady state propagation of light. The amount of power that has to be 
coupled to each core for steady state evolution given by solutions above depends on 
four parameters: (i) number of surrounding cores N, (ii) input power P_in (or total 
power P_total), (iii) linear phase mismatch kappa, and (iv) the ratio between the 
nonlinear coefficients. Example of the four families of steady state solutions are 
presented in Figs. 2, 3. 
 

 
Figure 2. Four values of Γ corresponding to different power splits between cores as 
functions of total input power; here 0 1/ 0.5, 1γ γ κ= = . Blue, green and read branches 
are stable while the black one is unstable. Here different curves for each branch 
correspond to N varying from 3 to 12 (from the bottom to the top). For red curve only 
odd N are shown.  
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Green line in Figs. 2, 3 corresponds to propagation of the most of power in the 
central core. Negative Γ means out-of phase fields in the central and peripheral 
cores. Note that when light is launched into the central core power will be coupled 
to the peripheral cores in the ring. The amount of power that will be coupled to 
each core depends on N, input power, phase mismatch and ratio between 
nonlinear coefficients. 
 
 

	
 

	
 
	
 

	
 

Figure 3. Dependence of the four solutions of Eq. (10) (shown by squares) on N. 
Here 0 1/ 0.5, 1, 40tPγ γ κ= = = . Solid lines are for the following analytical asymptotic 
solutions valid in the limit P_t ≫ 1.  
 
Blue curve:  ;  
 
 
Black line:                ;  
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It is seen that analytical approximation show very good agreement with numerical 
modelling in this limit. 
 

 
 

Figure 3B. Four values of Γ corresponding to different power splits between cores as 
functions of total input power tP  and 0 1/γ γ . Here 1κ = , N=3.  

 

 
4.3 Stability of the steady state solutions  

 
Consider now stability of steady state solutions of - analogue of the modulation 
instability for considered low dimension discrete system (3). The small amplitude 
disturbance is taken in a standard form:

	
  

 

0 1{ , } { , } exp[ ],U U A a ib B c id i zλ= + + + + ×
 

  for perturbations proportional to exp[ ]pz  the increment of instability is given 
(omitting details of calculations) by the following expression: 

 

2 2 20

1

1 1(2 ( 4 ) ( 4 ) )Np B Aγ
γ

= − + − + Γ − Γ
Γ Γ

 

Distribution A:  Approved for public release; distribution is unlimited.



Instability results in periodic oscillations of energy between cores with amplitude of 
modulations depending on total power, i.e. the relative modulation depth decreases 
with growing input power. The most important consequences of the instability is that 
it makes control of power dynamics hardly possible. For system with more than three 
cores the instability, in general, produces stochastic modulation breaking the mutual 
coherence in the cores. The energy exchange oscillations can be produced not only 
as a result of the instability, but also as a result of initial conditions (in case of 
arbitrary input powers). 
 

 4.4 Energy exchange in the case of uniform initial power 
distribution  
 
The Hamiltonian structure of the equations (3) and the additional conserved quantity 
greatly restricts dynamics in the considered low dimension dynamic system imposing 
constraints on the evolution of the waves and the energy exchange between cores. 
For instance, consider evolution of input condition with power initially equally 
distributed between all cores. Energy exchange can be characterized by the 
following function:  
  
                                     ,  
 
 
 
Now using restrictions imposed by the Hamiltonian it is easy to show that the 
complete energy transfer from the outer cores to the central one is possible only for 
one specific value of input power (and at specific propagation length): 
 
 
 
 
 
 
 
 
 
The observed effect - localization of all initially evenly distributed power into the 
central core can be considered as an ultimate discrete version of the self-focusing of 
light. The analytical expression above describing condition of the complete energy 
exchange, in particular, gives an estimate of the number of cores required to convert 
all power e.g. from the silica-based peripheral cores to the central air-core in a 
hollow-core photonic crystal fibre. Figure 4 shows comparison of the analytical result  
and numerically calculated threshold of a complete energy transfer given by 
 
 
 
 
 
 
 

! 

"U0 = (N |U0 |
2 # |U1 |

2) /Pt

1/2

0 1

2
( 2) / 1

th
in in

NP P
N
κ

γ γ

−+
= =

+ −

! 

"U0 = (N |U0 |
2 # |U1 |

2) /Pt

Distribution A:  Approved for public release; distribution is unlimited.



 
 

 
 
 
Figure 4. X-axis: energy transfer (red markers) and the analytical formula (solid line). 
Y-axis to the right: numerically calculated period of the power oscillations (gray 
markers) and analytical approximation: 23.23 2.04 / N+ (solid line). Insets show 
complete energy transfer at certain distances. Here 0 1 1 0 1 2; ; .C Cγ γ β β= = =  The 
period of the energy exchanges decays with N as 2N . 
 
 
Note that the presented theory can be easily generalized to pulse propagation and 
nonlinear temporal dynamics having numerous applications. In the recent important 
work [13] it has been studied the efficiency of nonlinear matching of optical fibres 
through a fundamental soliton coupling from one fibre into another opening a range 
of engineering applications, e.g. optimized Raman red-shift and supercontinuum 
generation. 
 

4.4 Instability in the case of angular perturbations  
 
 Now we consider angular instabilities in the system with one central core N and 

peripheral. It is convenient to re-write equations in the following dimensionless form: 
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Consider now perturbations of general form: 
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             Resulting spectral problem for the angular perturbation equations reads: 
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It is straightforward to derive the instability increment: 
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5. Stochastization above instability threshold  	
  

Next we present an example of numerical simulation of modulation instability in the 
square lattice system with four cores. In the general case power transfer cannot be 
fully described by analysis of the Hamiltonian and numerical modelling is required. 
Consider nonlinear evolution of the fields A	
  (z)	
  k	
  in the fouri-core fibre (k-cores) with 
Kerr nonlinearity. Consider initial condition with small deviations from the uniform 
power distribution:	
  

.4,3,2,1,)0(),0(),0()0()0( 00 =<<++= kPbaibaPA kkkkk  

We present in this subsection results for different initial power 0P  and	
  
3 3

1 3 2 4 1 2 3 410 , 10 , 0a a a a b b b b− −= = − = = = = = = .	
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Figure 5. Power evolution in first core (red line), the second core (green line), 
third core (blue line) and fourth core (black line) for different input powers 0P . 

	
  
Figure 5 shows that transition to instability in the case of four cores easily leads to 
stochastisation. Figure 5 (top left) shows stable dynamics below threshold (equal to 
1). Figure 5 (top right) presents development of instability in the case of initial power 
equal to the threshold and only minimally exceeding the threshold because of 
perturbations. In this case one can see monotonic power exchange over very long 
distance. However, a small increase of input power (Fig. 5, bottom left) dramatically 
changes the power evolution. As it can be seen from Fig. 5 the dynamics becomes 
very irregular after certain distance. In the case of multiple cores, the modulation 
instability can lead to fats stochastisation and non-predictable evolution of powers 
that might lead to engineering challenges in multi-core systems. 
 

 
 Conclusions 
In this project we studied mathematical models describing propagation of optical 
field in multi-core nonlinear systems. We introduced models governing optical field 
propagation in the multiple-core fibres. We have determined theoretically thresholds 
of the modulation instability in the 2D infinite array of discrete waveguides, and in 2-, 
3- and 4-core array systems. The obtained theoretical results have been verified 
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using numerical simulations. We have analysed the instabilities in the ring 
configurations with a central core and N symmetrically surrounding cores. This 
system can be analysed by reduction to an effective generalised non-symmetric two-
core system. The non-symmetric two-core system has nontrivial steady state 
solutions with non-equal power distribution between the cores. The balance can be 
achieved only with corresponding contribution of the nonlinearity. We have found 
stationary solutions based on a balance provided by nonlinear phase shift. We have 
next determined theoretically thresholds of the modulation instability in the ring 
configuration. The obtained theoretical results have been verified using numerical 
simulations. The important prediction of the theory is a level of nonlinear oscillations 
resulting from the development of modulation instability. We have started analysis of 
stochastisation in four- and more core systems.  
 
In general, we have presented a theory energy transfer in low dimension arrays of 
coupled nonlinear waveguides. The developed theory is rather generic and has a 
range of potential applications. Without loss of generality, particular emphasis in the 
analysis is made on multi-core fibre technology, important in the fields of both high 
power fibre lasers and ultra-high-capacity optical communication systems. We have 
derived for the array with non-equal cores the nonlinear phase matching conditions 
that provide for stable coherent steady-state propagation in multiple cores. We 
solved the stability problem and found an exact analytical condition of complete 
energy transfer from peripheral to the central core - ultimate discrete analogy of the 
self-focusing effect.  
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